
[A. McAllister, S. O’Hara, “Toward Effective Management of Large-Scale Software”, 2016]

Identifying Data Flows Across Multiple Boundaries and Programming Languages
Dave Kell (dave.kell@unb.ca) | Andrew McAllister (andrewm@unb.ca) | Steve O’Hara (steve@eaglegacy.com)

The Importance of Data Flow
 Communication is what this world is all about. Productive and understandable communication builds
empires, while poor communication breaks down relationships. Software applications are no different.
The scale of software holdings for most successful companies today are massive and incredibly complex.
They traverse boundaries from manual to automated, legacy technology to advanced technology, one
programming language to another (to name a few). These components are woven together over time
like an intricate tapestry, which eventually become the application. Many software developers will have a
hand in creation and maintenance of applications. New ideas and components mean modifying or mod-
ernizing other components. Business processes or technology changes can impact small or huge chang-
es. The complexity with which data flows through such an application can be incomprehensible and for-
midable for an individual or even a team to shoulder and understand. Now imagine having to make piv-
otal business-defining decisions based on that understanding and information. How confident would
you be?

A Simple Example of Complexity
 The application described in “Figure 1 – Photography Website”, is a personal web-
site developed and designed by one administrator. While the website is aimed at family
photos, videos, and information, it is heavily used by many visitors. Since its creation,
the photos have been viewed over 6 million times. Part of the website described in the
data-flow diagram, Fig.1, revolves around the photos and the people (faces) contained
within each photo. A good example of the complex nature of data-flow can be illustrat-
ed by the way that the faces information is updated.
 This example contains three different types of data stores (INI file, CSV file, and a da-
tabase), six different applications (Google Picasa, Batch shell program, Java, PHP, SQL,
and HTML), and contains manual processes (e.g. administrator updating Picasa) and au-
tomated processes (via website generating photo page).

Understanding Data Flows
 Understanding this complex flow of data requires either the
original developer, time looking at source code, compiled code,
log files, and/or running specific localized tests. A new adminis-
trator of the site would have to spend significant amounts of
time and resources before being able to make any modifications
or updates. Now imagine this is a multi-billion-dollar company
and the complexity is hundreds or thousands of times what is in-
volved with this example. A more efficient method of extracting
data flow information from a complex application can provide
immense benefits to the company and enhance the value of the
software.

Figure 1 - Photography Website

The Impact of One Change
 An administrator utilizes the Google Picasa application which updates a picasa.ini file within the Photos directory. A separate
batch file reads this picasa.ini file and executes a Java program (PicasaReader.java) that updates a CSV file. A PHP program
uses this file (faces.csv) and updates (via a SQL query) the FACES table within a database. Another PHP program uses this table
and generates a html page that is displayed to a visitor of the website.

The Challenges with Data Flows
 There are some challenges with identifying data-flows that
make it a complex and difficult problem.

To start, what is a data flow?
 • Is it a method call within a program?
 • Is it input/output of a program?
 • Is the flow of data in a control-flow graph?
 • Is it the flow of data across a network?
 • Is it how data flows at runtime?
 • Is it the capability of a application to flow data or the
 instances of actual flow?
 • Could it be any of the above?

Assuming the concept of a data flow has been precisely de-
fined, what information represents the flow?
 • Is it a single line of code?
 • Is it a single piece of data or multiple pieces?
 • Is it an entire method or class?
 • Is it a data structure?
 • Would the answer depend on the definition?

Equally as important, how can one determine when the data
flows occur during the execution of the application? Is it possi-
ble capture all the instances of it, even manual ones?
 • When are data stores modified or updated manually?
 • When do batch jobs run and how often?
 • When are files manually created, edited, copied?
 • When are databases modified manually?
 • Has the data flow been triggered manually or
 automatically?
 • People talking to applications?
 • Applications talking to other applications?

Assuming all of the above is possible:
 • How would the source of a data flow be represented?
 • How would the destination of a data flow be
 represented?
 • How would the semantics (such as validated data, or
 timing) of a data flow be represented?

The Path Forward
 As shown in the example, the challenges above pose diffi-
culties even to a small amount of code. Using manual examina-
tion (viewing source code) and ad-hoc processing (running lo-
calized tests), some of these answers can be discovered, but
manual identification is a tedious and costly endeavor. LIke-
wise, with large-scale applications, this approach becomes im-
probable for an individual or even a team to accomplish effi-
ciently. Our research is to discover if it is possible to automati-
cally extract this information, even from large-scale software ap-
plications. Given the following framework (Figure 2) for
post-production software maintenance (PPSM), our goal is to
improve or expose deeper understanding of the ability to ana-
lyze software applications (section 2 on the pyramid). If we are
able to increase the efficiency, reduce resources, costs, or im-
prove results, we will have greatly aided the efforts of making
changes or decisions. For businesses, the ability to make rapid,
informed, and accurate decisions is a tremendous advantage.

